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[ ABSTRACT |

HIS study explores effect of estimation risk on an admis
T sible efficient set and an optimal portfolio based on a Bayesian
framework assuming diffuse prior and informative conjugate prior
distribution functions. Based on the U.S. sectorial index, the
result indicated that, when estimation risk is taken into account,
the admissible efficient set is not changed. Therefore, three
conclusions can be drawn. First, true portfolio returns can be
represented by weighted average sample returns given that
samples are drawn from high frequency data with a long average
period. However, historical sample average is not an efficient
estimator for true parameters. Second, portfolio risk or variance,
when estimation risk is built into a decision, is affected by a scale
factor. Therefore, a Bayesian admissible efficient set will always
lies to the right of the traditional admissible efficient set due to
higher risk from estimation. Third, portfolio decisions based on
a traditional approach, ignoring estimation risk, would lead to a
suboptimal portfolio due to utility loss caused by underestimation
of risk. Empirical results show that annualized Bayesian portfolio
risk is larger than that of a traditional portfolio by approximately
40 to 80 basis points for a weekly index return interval and
approximately 100 to 220 basis points for a monthly index return
interval. Moreover, The annualized average excess portfolio
return from Bayes-Stein shrinkage portfolio is higher than those
of traditional, passive, and naive portfolio by 36, 384, and 144

basis points, respectively.
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1. Introduction

‘ x ’ HEN making a decision in portfolio selection under

uncertainty, investors have long followed the practice
of modern portfolio theory as documented by Markowitz (1952).
Traditional portfolio allocation assumes known parameters with
stationarity. In other words, traditional practice assumes that
the joint probability density function of asset returns and true
population mean vector and variance-covariance are known and
parameters possess a stationary property. As a result of
traditional assumptions, expected utility can be evaluated by
substituting point estimates of sampling moments in the utility
function. However, the joint probability density function of asset
returns and parameters are usually not completely known.
Therefore, in the portfolio selection process, we encounter not
only the uncertainty of the future asset return generating process,
but also the uncertainty of the functional form of the joint
probability density function and of asset return parameters. These
uncertainties are called estimation risks. The “estimation risk”
comes from both choosing poor probability models and ignoring

parameter uncertainty.

The common practice in portfolio selection for the
traditional perspective is utilizing a single unknown parameter,
such as assuming that the expected return for the portfolio is
known but the volatility of asset returns is not known. To solve a
portfolio selection problem is to find the appropriate weight of
investment (asset allocation) in order to minimize return volatility
given the expected return. By assuming one parameter is known,
estimation risk is not treated properly. The contribution of this
study is to provide empirical evidence of estimation uncertainty
on the admissible efficient set based on the analytical works of
Brown (1979) ,Bawa (1976), and Shrinkage estimator of Jorion
(1986).

There are four pieces of related works discussed in this

study. The first discussion is to explore effect of estimation risk
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on the admissble efficient set. The second aspect is to examine
whether an optimal portfolio suggested by traditional approach
and an optimal portfolio incorporating estimation risk are different
or not. The third study is to analytically discuss loss in utility due
to the effect of estimation risk in portfolio formation process. The
last facet is to provide empirical evidence regarding effect of
estimation risk on an optimal portfolio. This study explores the
effect of estimation risk on an admissible efficient set and an
optimal portfolio based on analysis under a Bayesian framework
assuming a diffused prior density function and informative prior

based on a selected conjugate density distribution.

Section Two discusses the evolutions of past studies
regarding the estimation risk and the application of Bayesian
Portfolios concept. Section Three explores the effects of estimation
risk on portfolio risk and portfolio return and loss in utility. Data
and Empirical evidence based on U.S. sectorial index returns
adjusted for dividend are provided in Section Four and Five,

respectively. The last section is the conclusion.

2. Estimation Risk and Bayesian
Portfolio Selection

NE of the fundamental propositions in modern finance
O theory is that security risk should be viewed in the
context of a portfolio. Jorion (1986) stated that “...It is astonishing
then that estimation techniques in finance have not recognized
the implications of this result for efficient estimation of unknown

parameters.”

Using the classical mean-variance framework, where no
attention is paid to uncertainty about the expected value and
covariance matrix of asset returns, investors may underestimate
portfolio risk and be willing to invest in a traditionally sub-optimal
portfolio. Adler and Dumars (1983) documented that determining
the optimal portfolio composition of the traditional approach is not

correct because there is no statistical approach taking into



account the estimation risk. Jorion (1985) explored estimation risk
in an international portfolio context and found that estimation risk
due to uncertain mean returns has a considerable impact on
optimal portfolio selection. Britten-Jones (1999) also performed
an empirical test of an international efficient portfolio by testing
mean variance efficiency using the regression approach and found
that sampling error in estimates of the weights of a global
efficient portfolio is large. The result implies that there is no
statistical support for portfolio diversification as suggested by

the traditional portfolio approach.

Empirical evidence from Klein and Bawa (1976, 1977),
Adler and Dumars (1983), Jorion (1985, 1986), Frost and Savarino
(1986), Britten-Jones (1999), Polson and Tew (2000), and
Greyserman et al. (2006) indicated that optimal members of
traditional portfolios are different from those of portfolios
incorporating estimation risk, and that it is more efficient to
incorporate estimation risk in the portfolio selection process. Klein
and Bawa (1977) also documented that risk-averse investors tend
to invest relatively more in securities about which they have more

information.

In portfolio selection within a Bayesian framework,
optimal weights of investment are based on maximization of
expected utility conditional on the predictive distribution of asset
returns. Diffuse prior or non-informative prior distribution is widely
used in previous work to alleviate the effect of estimation risk,
such as by Klein and Bawa (1976), Bawa (1979), Brown (1979),
etc. However, the estimation error is not reduced. Performance
of the portfolio can be improved if the informative prior that

reduces estimation risk is correctly specified.

Frost and Savarino (1986) suggested an informative prior

distribution where all securities have identical expected returns,
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variances, and pairwise correlation coefficients. Such informative
priors would reduce the estimation error because posterior
estimates of parameters will be drawn from a specific distribution
toward the average values of those parameters for all securities in
the population or drawn toward the grand mean of those
parameters. According to Barberis (2000), the empirical evidence
indicates that investors with long horizon investments who ignore
parameter uncertainty may over allocate to stocks by a sizeable
amount. This suggests that estimation risk should be incorporated

in portfolio selection decision.

2.1 Clarification of Variable and Notation of Portfolio
Selection Process:

LetRit=0r ,r,..,r )V, r,r, ., V., r, r, ..,
11 12 1t

21 22 2t nl n2

rm)’] denote the random return vector representing rates of return
onasseti,i=1,2,..,n,in period t, ?ndenote a vector or random
variable, namely future security returns, w denote a vector of
proportions of wealth invested in securities, R(r, w) denote
a random return vector resulting from an investor’s decision and
f (Rl6) and p(Rt, 0)' denote a joint probability density function for
random return observations R‘t and a parameter vectorf. The
parameter vector under portfolio allocation contains the true value
of mean and covariance of asset returns, =(u, Z). Furthermore,

assume that data consists of a random sample return of T

observations on each sectorial return.

Optimal investment decisions by any rational investor is
determined from a golden axiom which complies with that of the
Von Neumann-Morgenstern axiom, stating that an investor chooses
an alternative investment that maximizes the expected utility
of return on his/her investment. The problem of portfolio
optimization is reduced to indicating the efficient frontier or the
set of portfolios that have maximal expected portfolio returns

given a specific level of expected portfolio variance or the set of

" The joint probability density function can be stated in the form of f (R1O). The interpretation of f (R1O) is the density function of security

return given that the true population parameter is known or f (6) is treated as a constant.
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portfolios that have minimal expected portfolio variance given a
specific level of expected portfolio return. Finally, let U(R) denote
any investor’s utility function defined over the random return
vector, R. If the true parameter, 6, is known, an investor would
choose an appropriate weight of investment that maximizes the

expected utility as stated below:
EU) = [UIRF, ]/ (RIO)R ()
R

In short, the optimal portfolio decision is to determine
optimal weights allocated to each sector or to find the solution
from a quadratic optimization that minimizes portfolio risk
subjected to the constraint set. Solution of the optimization
problem or weight invested in each sector under mean variance

efficient portfolio, XEV, is determined as:

1

L SYER
"I ER) (R) 2

Xgv =
The optimal weights of a global minimum portfolio

assigned to each sector, XGM, are determined as:

1

— 3 (3)
T

Xom =

From the solution of global minimum optimal weight, the
variance-covariance matrix is the key factor in the problem. This
implies that estimation risk can be incorporated into the portfolio
selection process by adjusting the variance-covariance matrix.
Updating or adjusting the variance-covariance matrix can be done
under the Bayesian framework. As suggested by Zellner and Chetty
(1965), incorporating parameter uncertainty in any decision
requires a derivation of predictive probability which can be done

by integrating out the unknown parameter.

2.2 Effect of Estimation Risk on Portfolio Return and
Portfolio Risk: An Analytical Analysis

In order to apply modern portfolio formation concepts, an

investor must form expectations about the future performance of

all securities in his/her universe. Future asset returns distribution

on a set of n securities are assumed to be multivariate normal

distributed with mean w and covariance matrix 2, where u is an

n x 1 vector, and X is an n x n positive definite symmetric matrix.

Let R represent the return vector with a dimension of t x 1
where t is the number of observations and W represents the
proportion of investment vector with the dimension of n x 1.

Sample mean and sample covariance can be defined as follows.

T

1
m, = ;Z R ,i=12,..,n (4)
=1

1 C r .
= ?‘_““ZI:(R:- -m)(R,-m;), i,j=12,...n 6

where :

3
I

sample mean vector

S = sample variance-covariance matrix

t = number of observations

= number of assets

>
|

Taking estimation risk into account, Kalymon (1971), Winkler
(1973), Barry (1974) and Bawa, Brown, and Klein (1979) suggested
a Bayesian framework under three states of prior knowledge.
The first state assumes that the population or true parameters, W
and X, are known. The first state is typically assumed in
traditional portfolio selection or mean variance analysis. The
second state assumes that the true variance-covariance 2 is known
and W is not known. Kalymon (1971) suggested Bayesian portfolio
selection under the second state. The third state assumes that
both population parameters W and Z are not known. In this study,

the analysis follows the third state as suggested by Winkler (1973).

From the concept of conditional probability, we can easily see that,,’th‘h’f]

.8 . . .
'”, ! Letoc denote proportional density function.

We can incorporate a constant into @Cand rewrite f( R|9J asf(R@)= f(R.8).
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2.2.1 The First State: Both u and X are Known

In this state, an investor estimates the population
mean W with sample mean m and population variance-covariance
matrix 2 with sample variance-covariance matrix S. Portfolio
return, W’u, is estimated by W’m and the portfolio variance,
WX W, is estimated by W’SW. The result of the first state is
equal to the result of the diffuse prior Bayesian portfolio as shown
in Appendix A. When sample size is very large and approaches

infinity, variance of portfolio equals W’SW.

2.2.2 The Second State: X'is Known and w is Not Known

Follow Kalymon (1971), in this state, an investor

treats S as the “known” value of Z and uses both prior and
other information to estimate the unknown mean w. The prior
information used in this study is data base prior which is obtained
from past data or the prior information is obtained from the asset
return itself of the current return of n assets. A posterior mean,
either diffuse or informative multivariate normal prior distribution,

is the sample mean return m.

According to Kalymon (1971), the variance-covariance

1
T)
number of observations. Portfolio return is W’m and the portfolio

matrix is specified as S +1? SorS (14+=)°, where T represents
variance is W’ [1+1T]SW. The portfolio variance can be rewritten

in terms of the portfolio variance of the first state as follows:
[1+1?] W’SW = [1+1?] * Portfolio variance of the first state (6)

2.2.3 The Third State: Both u and X are Not Known
In this state, informative prior Bayesian with a
specified prior conjugate distribution is applied. Suppose an
investor assumes that joint distribution of (& and s is
normal-inverted Wishart family. For a multinormal process with

unknown mean vector {1 and unknown variance-covariance matrix

1% 30 a1iufl 116 gAIAN - FUINAN 2550

i the corresponding family of conjugate prior distributions is the
normal-inverted Wishart family. Following Winkler (1973), the
marginal distribution of i is inverted Wishart. The distribution of
mean return [t conditional on the variance-covariance matrix is
normal with a mean vector of m and a covariance matrix of

1?2. Symbolically, this can be written f (| 2)~Nim, 1?2).

The predictive distribution of is a multivariate t distribution

with the following two moments:

E(R) = m = sample mean (7.1)
~ o r+1 7T-1
Var(R) = 8
ar(R) = ()N —)
T8 10T —n+1 (7.2)
=Dt D g
I''(T—-n-1)

Portfolio return is and the portfolio variance is
T -n+1) (I 1T -n+1)
THT -n-1) TNT=n-1

W’ [{T 1SW=[ ] WSW

(8)

where: [{Tz DT =n+1) | is a scalar term® larger than 1.
T*(T -n-1)

With the diffuse prior and selected conjugate prior
distributions, we would benefit from the analytical Bayesian
framework by having the closed form of the first two moments of

asset return as shown in three states of analysis discussed above.

2 See the Appendices A and B for proofs.

3 For details see Appendix C
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2.3 Bayesian Framework Treating all Assets are
Identical: Bayes-Stein Shrinkage

Within this framework, the prior belief is that all assets
will converge to a common mean or grand mean. True
parameters can be estimated by assigning appropriate weights to
the historical sample mean and the grand mean depending on
prior information or knowledge of asset returns. If an investor has
high confidence about the asset return distribution due to long
historical data being used, less weight will be given to the grand
mean. On the other hand, if not enough information regarding
asset returns is on hand, the investor would assign more weight
to the common mean. According to Jorion (1986), the selected
informative conjugate prior on average return is given by the

following.

P(R[n, A) o eXp[—(%)(E—lﬁ)'(iE_')(E—ln)] 9

where: R = historical or sample average return

M = grand mean

A = prior precision

Given that the vector of observed returns on any assets

follows the normal distribution which can be stated as
r, ~ NID(u,X), t=1,2,....T (10)

Applying concept of the James-Stein shrinkage estimator,
Jorion (1986) suggested the use of the selected informative prior
as in Equation (9) and inferred that the predictive density function
p(rﬁ?, >, A) is multivariate normal with mean and variance as

stated below.

E[r]=(1-o)R + ol (1)
11’
(T | F e p— —
T+A T(T+1+A)1T7'1 (12
where: = weight assigned to grand mean

E[r] = vector of future rate of return derived from the
predictive density function

A (13)
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1 = vector of unity

A = precision parameter

Following Jorion (1986), the grand mean is treated as the
average return for the global minimum portfolio. The grand mean
can be calculated as the product of the global minimum weight
and the historical average return on each asset.

— 1T
wWR=——R (14)

1

1]

n

| —

An empirical Bayesian approach lets the data speak through
the precision parameter, A. This means that A is directly estimated
from the data. Given that probability density function of the
precision, p(A|u, M, £) is a gamma distribution with mean
(N+2) where d is defined as (R - 1n)’S" (R - 1n). The
shricrfkage coefficient, @, and precision, as constructed by Jorion

(1986) are given below.

&= _N+2 _ (15)
(N +2)+(R-n)TZ (R —nl)
. (N +2)(T -1) "

[(R-nD)'S™(R-nI(T - N -2)]

Zellner and Chetty (1965) suggested a predict variance-
covariance estimator when the variance-covariance parameter is
not known, as shown below.

-1 (17)
——S
T'-N-2

where: S = unbiased sample variance-covariance matrix

v =

= 1‘. vZay -
\ 4
a7 “1. 2
00 1~ = : : 4
\_\./\/ \‘;\I
Ill-'|
-.014
o At
< \
S \
-.02 \
VM A
=\ \‘\_\\/
-.03 \
"\:'\-H\ ;
\/
-.04

40 30 290, 40 0 10 20 30 | 40



3. Effect of Estimation Risk on
Efficient Set and Utility Loss

3.1 Effect of Estimation Risk on Efficient Set

Two points can be concluded from the analytical Bayesian
portfolio of three states discussed in the last section. The first is
the conclusion drawn for portfolio return and the second is the
conclusion for portfolio risk or variance when estimation risk is
taken into account. Portfolio returns are the same in all three
states, W’m. Klein, Bawa, and Brown (1979) showed that in the
limiting and diffuse prior case, the mean of the relevant predictive

distribution of returns is given by the sample mean.

Portfolio risk or portfolio variance is different by a scale
factor. This means that portfolio variance in all states has a
common factor, W’ SW. The variance-covariance matrix in the
second and third states can be written in the form of the
variance-covariance matrix of the first state. As shown in Table 1,
as estimation risk is incorporated in the portfolio formation
process, portfolio risk or variance of the portfolio in state 2 and

state 3 is larger than that of the portfolio in state 1 by

M-1)(T-n+1)

1
[T+ ]and |
T PoT-n+1)

], respectively.

Table1: This table shows portfolio return and portfolio variance
under three states of analysis. The first state assumes that
population or true parameters, W and 2, are known. The first
state is typically assumed in traditional portfolio selection or mean
variance analysis. The second state assumes that true variance-
covariance 2 is known and w is not known. The third state

assumes that both population parameters w and Z are not known.
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From Table 1, portfolio variance of the third state is the
largest and portfolio variance of the first state, or traditional
mean-variance approach, has the smallest value. This can be
interpreted as meaning that, as the uncertainty from estimation
increases, the risk perceived by investors should increase.
The application is that a rational investor will be more aware of
risk. Therefore, given the same level of risk, a rational investor
who takes into account the estimation risk will require a higher
expected rate of return than one who forms a portfolio based on

a traditional approach.

The admissible efficient set is a set of portfolio that yields
the highest portfolio return given a level of risk, or a set of
portfolio that has the lowest portfolio risk given a level of portfolio
return. From Table 1, the portfolio risk of each state, W’ SW, is
the same, which can be interpreted as meaning that portfolio risk
in each state is not affected by estimation risk. Only the constant
term is multiplied to the portfolio risk, W’SW. An investor would
be selecting the same admissible efficient set under the

mean-variance analysis regardless of the state of analysis.

Let W’a represents the vector of optimal proportion
allocated to each asset under each state of analysis and let Ai
be the vector of weights conditional on portfolio variance of each
state.

Lot Ki= [1+%]

(TN T 1)

K2 = ,
PA(T-n-1)

Ai = Vector of weight conditional on portfolio variance,

Ai, in each state.

State of analysis Portfolio Return

Portfolio Variance

Both w and X are known Wm W SW
2 is known and W is not known Wm
Both w and X are not known Wm W SW

[1+7)

[w]
(T-n-1)
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Table 2: This table shows the admissible set under each state of
analysis. There are three states in the analysis. The first state
assumes that population or true parameters, W and X, are known.
The first state is typically assumed in traditional portfolio selection
or mean variance analysis. The second state assumes that true
variance-covariance 2 is known and W is not known. The third
state assumes that both population parameters W and X are not

known.

period wealth will be maximized based on expected return from

investor portfolio decisions. This implies that to maximize end of

period wealth, an investor decides on the weight of investment to

maximize the utility of expected return on portfolio M =, where is

the vector of future observed return.
E[UM)] = [U(M)p(M[0)dM "

M
From the expected utility

function above, investor utility

State of analysis Vector Ai

function and the distribution of rate

Both w and X are known
2 is known and W is not known

Both w and X are not known

A, = {W|W SW
A, ={W|K, WSW =KW SW}

A, ={W|K, W SW =KW SW '}

. , of return conditioned on a set of
= Wa SWa }
parameters must be known.
A traditional portfolio formation
approach assumes that true

parameters can be estimated by

From Table 2, vectors of weight assigned to the optimal
portfolio conditional on portfolio variance in three states are
different due to the scale factors. Since K1 and K2 are constants,
conditional weight assigned to each asset will not be affected by
estimation risk. This can be substantiated by empirical evidence.
When comparing the efficient frontier constructed from a
traditional approach with that of the Bayesian approach,
analytically, the Bayesian portfolio has higher risk for all levels of
expected return. This implies that the Bayesian efficient frontier
will always lies to the right of the traditional efficient frontier or

lies below the traditional portfolio.

3.2 Effect of Estimation Risk on Investor Utility

Two major steps in portfolio theory are constructing an
efficient frontier and determining an optimal portfolio according to
investor preference. Constructing an efficient frontier is the first
step in portfolio theory. Allocating one’s wealth into two types of
assets, namely risky and riskless assets, is the second step.
An optimal portfolio is determined as a tangency between investor’s
utility and a portfolio efficient set. An investor always maximizes

the expected utility of his or her end of period wealth. End of
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sample parameters, (Ri), obtained
from the historical rate of return on assets. An optimal portfolio
under a traditional portfolio approach is obtained by the

relationship shown below.

max E,[UM)0 =8(R)] (19)

To incorporate estimation risk in portfolio theory, the
predictive density function of asset returns should be used. Zellner
and Chetty (1965) suggested that, in determining an optimal
portfolio based on a Bayesian framework, by integrating out the
unknown parameter from the predictive density, estimation risk is
implicitly taken into account and the portfolio optimization
problem can be described as the maximization of the

unconditional expected utility.

max £, [Ey  [U(M )01] 20)

E4[E,,[UM)0]

k|8

= [[un)p|oyam p(oR.1,)a6 21
6 R

Where p(B‘R, I ) is the posterior density function of 6,

given observed return and prior information, IO. We can state



the posterior function as the product of density function of
a likelihood observed return and prior belief of true parameters as

follows.

= pO|R.1,) = f(RO)p(O]I,) (22)

The expected utility optimization as a function of

mean-variance can be stated as

E[UM)] = Z( 1, ,07%) 23

Expected Return

1% 30 a1iufl 116 gAIAN - FUINAN 2550

where: i, OZM are portfolio return and variance, respectively.
As utility function depends on portfolio expected returns
and variances and, as portfolio return is w’Rl.,and portfolio
variance is w’ 2 w, optimal utility relies on the distribution
moments, 8 = (u, X). If the distribution moments of true
parameters are known, the expected utility of each investor would

be optimized. Let Z (1” , O‘Z*Z) be an optimal expected utility.

Figure 1: Utility Loss Due To Estimation Risk

Risk-free
Equivalent

] Loss of Expected Utility

Standard deviation

Estimates

Based on True Parameters
Based on Sample
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Z( ,u;_, \ U;z;) =Z( 1'1']*(9)‘#: 2) (24)

'
= Z(W* My W* ZW”) = Zoptimal
On the other hand, true parameters are not known. Sample
parameters are used as estimates for true parameters in
determining optimal portfolio choice. Expected utility of an
optimal portfolio based on distribution moments of sample

estimates is stated below.
Z(WORN D)= Z( W, W ZR) @5

It can be implied from Equations (24) and (25) that
expected utility based on true parameter estimators is always
higher than that based on sample estimates, Z (W* u, W’ = w’)

. This is because there is no estimation error in the

optimal

portfolio optimization process when true parameters are treated

as inputs. This implies that portfolio decisions based on sample

moments cause loss in utility due to parameter uncertainty.

Following Brown (1976), loss in utility due to estimation

risk is meaaiirad ag

LW W) = Zezima ~20Y) (26)

optimal

Figure 1 depicts loss in utility due to estimation risk.
If the true moments of asset return distribution are known, an
optimal portfolio is located on solid line at point A, where the
optimal weight is w*. If an efficient set is formed based on sample
parameters, as suggested by a traditional portfolio approach, the
dashed frontier, an optimal portfolio is located at point B, where
the optimal weight is w’. However, this choice wis suboptimal
relative to the true parameters. This is because point C, with the
same weight, v?/, as that of traditional portfolio yields lower utility
relative to utility at point A. The difference in value of expected
utility between point A and point C is called utility loss due to
estimation risk. Suboptimal portfolio decisions due to ignoring

estimation risk will be explored empirically in Section 5.

215 1SUSMNSESND

4. Data

HERE are one hundred and sixty-six sectors listed on
T the New York Stock Exchange (NYSE). Information for
these 166 index sectors was obtained from Data Stream. Periods
in this study are weekly and monthly ranging from 1995 to 2004.
There are 522 week-observations per sector and 120 month-
observations per sector. The Internet sector (INTNT) was deleted
due to incomplete data. This leaves 165 sectors for the screening
process. Due to the large information set, two screening factors
for selecting data were set in this study. The size and liquidity of
each sector are used as screening factors. The proxy for size is
the market capitalization of each sector and the proxy for liquidity
is the turnover volume of each sector. The sectorial index used in
this study is the sectorial index return adjusted dividend or Return

Index (RI) from “Data Stream”.

In the screening process, based on annual data from 1995
to 2004, the largest 30 sectors were selected based on size,
market capitalization. Among those 30 sectors, the fifteen most
liquid sectors by their turnover volume were selected as the data
set. Market values and turnover volumes of the selected fifteen
sectors represent 39.81 percent of the total market value and
54.64 percent of the total market turnover volumes. Table 3 shows

the result of data screening as discussed.

As shown in Table 3, Technology Hardware and
Equipment (INFOH) is the largest and is the most liquid sector.
Semiconductors (SEMIC) is the lowest in market capitalization
sector and Fixed Line Telecom (TELFL) is the least liquid sector.
The Banking sector is ranked among the largest in market size
but is ranked in the bottom 5 in turnover volume, whereas
Semiconductors (SEMIC) and Telecom Equipment (TELEQ) are
ranked in the bottom 5 of market capitalization but are ranked as
the top 5 in turnover volume. This implies that a sector ranked as
the largest in market capitalization may not be ranked as the most

liquid sector, and vice versa.



Table 3: Summary of Screening Results.

Panel A of this table shows selected sectors based on two criteria

and panel B shows ranked sectors by each criteria as top 5 and

bottom 5.
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Panel A: Result of data screening based on two criteria: size and liquidity.

Market Value

Turnover Volumes

(in Million $) (Thousands of Traded Share)
INFOH 919,200.36 81,637,018.40
TECHD 919,200.36 81,637,018.40
PHARM 808,065.43 20,151,565.13
BANKS 732,578.36 12,961,563.60
PHRMC 682,461.43 13,371,363.13
SFTCS 600,872.36 39,814,041.47
GNRET 502,692.29 17,124,408.27
TELCM 495,452 57 16,934,924.67
RTAIL 487,974.29 17,117,174.53
TELFL 429,564.00 12,309,664.53
SOFTW 394,993.36 27,241,120.13
COMPH 339,161.79 23,157,260.07
MEDIA 299,057.86 12,995,580.13
TELEQ 294,677.50 29,752,702.33
SEMIC 285,361.86 28,726,316.87

Panel B: This panel shows results from ranking selected sectors in top 5 and bottom

5 based on market value and turnover volume respectively.

Top 5 Bottom 5

Market MarketValue Market Market Value
Value (in Million $) Value (in Million $)
INFOH 919,200.36 SOFTW 394,993.36
TECHD 919,200.36 COMPH 339,161.79
PHARM 808,065.43 MEDIA 299,057.86
BANKS 732,578.36 TELEQ 294,677.50
PHRMC 682,461.43 SEMIC 285,361.86
INFOH 81,637,018.40 TELCM 16,934,924.67
TECHD 81,637,018.40 PHRMC 13,371,363.13
SFTCS 39,814,041.47 MEDIA 12,995,580.13
TELEQ 29,752,702.33 BANKS 12,961,563.60
SEMIC 28,726,316.87 TELFL 12,309,664.53
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9. Methodology and Empirical Evidence

HE empirical study in this section aims at comparing two
T types of efficient frontier, the traditional mean-variance
efficient frontier and the Bayesian efficient frontier with selected
conjugate prior distribution. The objective is to substantiate that,
when estimation risk is taken into account, the admissible set of the
efficient frontier will not be changed. As estimation risk is incorporated
in portfolio formation, the Bayesian efficient set should always lie

to the right of the traditional efficient set due to higher risk.

To substantiate the invariant admissible set when
incorporating estimation risk in portfolio formation, two analyses
of different period lengths are explored and compared. The first
analysis is to construct and compare portfolio efficient sets and
optimal weights for traditional and Bayesian portfolios for the long
historical period. The second analysis is conducted over a

one-year horizon by comparing efficient sets and optimal weights.

Optimal weights will be assigned based on a quadratic
optimization approach. The objective function in portfolio
formation is to minimize portfolio risk given a level of expected
return. In this subsection, a Bayesian portfolio is formed under
the assumption that both w and Z are not known and that joint
distribution of & and 3 is normakinverted Wishart family. Thus,
the corresponding family of conjugate prior distributions is the
normal-inverted Wishart family. Following analysis suggested by
Winkler (1973), Bayesian portfolio return and portfolio variance

will be estimated as follows:

Based on Equations (7) and (8), the objective functions in
the portfolio optimization procedure of two types of efficient set
are stated below.

Traditional approach:

Obj.  Min W’SW (27)

Bayesian Approach (state 3):

, (T -1)T-n+1)
Obj. Min[——————— 1 W'SW (28)
T(T-n11
where: T = number of observations

n number of sectors
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Efficient frontiers from both approaches, as shown in Figures
2 and 3, are of the same shape for both sub-periods. When
comparing efficient sets between traditional and Bayesian
approaches, both efficient sets do not cross each other and the
Bayesian efficient set always lies to the right of the traditional
portfolio. The empirical results support the analytical results stated
by Brown (1979) and Klein and Bawa (1979). These results showed
that estimation risk leads to different optimal portfolio choice

leaving admissible efficient sets unaffected.

Barry (1974), Klein and Bawa (1979), and Brown (1979)
have provided theoretical proof that estimation risk leads to
different optimal portfolio choice while the admissible efficient
sets are not affected. However, no empirical evidence has been
proposed to support the claim and their analyses are based on
the diffuse prior distribution case. In this study, it is found that the
admissible efficient sets are the same and the optimal weights
of the two approaches are not different, as shown in Table 4.
However, the portfolio risk of the Bayesian portfolio is higher than
that of the traditional portfolio at the same level of portfolio
return. As a result, the Bayesian efficient portfolio always lies to
the right of the traditional efficient portfolio as depicted in
Figures 2 to 4. This implies that if investors form portfolios
which are mean-variance efficient portfolios, portfolio risks are

underestimated from a Bayesian portfolio perspective.

Empirical results shown in Table 5 indicate that annualized
Bayesian portfolio risk is consistently higher than that of
traditional portfolios. For monthly index return, annualized
Bayesian portfolio risk is higher, ranging from 104 to 223 basis
points in the first sub-period, and from 106 to 152 basis points
in the second sub-period. For the weekly index return panel,
annualized Bayesian portfolio risk is larger than that of a traditional
portfolio in the range of 43 to 83 basis points in sub-period
1995-1999, and 51 to 72 basis points in sub-period 2000-2004.

It can be deduced from this section that portfolio decisions
based on a traditional portfolio approach, ignoring estimation risk,
would lead to a suboptimal portfolio. The empirical result in this
section supports the analytical discussion in Section 3. When
estimation risk is ignored, an investor would face a utility loss

investment decision due to underestimated portfolio risk. Results
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Figure 2: This figure depicts two efficient frontiers, traditional mean-variance and Bayesian portfolio. Panel A shows two

frontiers based on monthly index returns and Panel B shows two frontiers based on weekly index returns ranging from 1995 - 1999.

Figure 2 A: Comparing Two Efficient Frontiers Based on Monthly Index Return

Ranging from 1995 - 1999

Bayes' and Mean-Variance-Efficient Frontier (Monthly Index Return 1995-1999)
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Figure 2 B: Comparing Two Efficient Frontiers Based on Weekly Index Return

Ranging from 1995 - 1999
Bayes' and Mean-Variance-Efficient Frontier (Weekly Index Return 1995-1999)
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Figure 3: This figure depicts two efficient frontiers, traditional mean-variance and Bayesian portfolio. Panel A shows two frontiers

based on monthly index returns and Panel B shows two frontiers based on weekly index returns ranging from 2000 - 2004.

Figure 3 A: Comparing Two Efficient Frontiers Based on Monthly Index Return Ranging from

2000 - 2004

Bayes' and Mean-Variance-Efficient Frontier (Monthly Index Return 2000-2004)
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Figure 3 B: Comparing Two Efficient Frontiers Based on Weekly Index Return Ranging from

2000 - 2004
Bayes' and Mean-Variance-Efficient Frontier (Weekly Index Return 2000-2004)
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Figure 4: This figure depicts two efficient frontiers, traditional mean-variance and Bayesian portfolio based on annual analysis. In Panels
A and B, two frontiers are based on monthly and weekly index returns of four sample years, which are 1998,1999, 2003, and 2004,

representing two sub-periods, respectively.

Figure 4 A: Bayesian and Mean-Variance Efficient Frontier Based on Monthly Index Return
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Figure 4 B: Bayesian and Mean-Variance Efficient Frontier Based on Weekly Index Return

Bayes' and MV-Efficient 1998 x Bayes' and MV-Efficient 1999
0.014
£ 0.012
3
g 001
§ [ I — * —I Bay es’ Port. 1998 i '
0'003_**__-1 EVPGFI.IB!I]!!. i GL___F_;__._l — # — Baye's Port, 1999
{ : k | & Ay EV Port. 1999
0.006 1 i 1 4: | g I
0.02 003 0.04 005 0.06 0.02 0.03 0.04 0.05
xBayes' and MV-Efficient 2003 x Bayes' and MV-Efficient 2004
5

6- 'F“'i—-n——Bavas'Porlzooa I 2
{3 EV Port. 2003
4'* I o 1 1 : :
0.02 0.03 0.04 0.05 0.06 0.012 0.014 0.016 0.018 0.02
Port. Risk Port. Risk

72 215 1SUSIMS8STiD



'

1% 30 a1iufl 116 gAIAN - FUINAN 2550

(syu10{ siseq)

UD:D.—U-mmD
7 99 19 TR S £ zs Is s iy
pozienuwy
%S  %II'E  %68T  %WSLT %E9T %U9ST  %O0ST  UOVT  %bPT  %EhT RN REE sokeq
%OP'E  %II'E  %SST  %TLT %I9T %SST  %6PT  %SKT  %SHT %I ST MO [eUOIpRI]
%8I0 %SI'0  %EL0 %010 %L00  %b00 %00  %I00-  %b00-  %L00-  wWmay Hog APPAM $00Z-0008
(s1urog siseq)
Zs1 ctl g1 sar sl 601 £01 901 901 aﬁsv_mﬁ
pazifenuuy
%I8S  %IP'S  %LO'S  %SLY %hb  %6Th  %9Th  %S0h  %b0F  %E0F SONEICS] sakeg
%69S  %IES  %96T  %SOE  %EEE  %OTH  %LOT  %66'€  %S6'E  %b6'S JSTY ‘MO [eUOIPRIL
%ILO  %ILD  %P90  %LS0  %0S0  %EH0  %LED  %0E0  %ETO %910  Wmay Hog AU 40020002
(s1ut0g siseg)
£8 1Y, 69 £9 L s 8% o £ £ Rt
pozienuuy
%EG'E  %UISE  USTE  %S6T %ILT %6KT  WOST  %SIT  %90T  %b0T ST "M0g sokeg
%I6E  WPSE  WPTE 96T %ILT %SKT  %6TT  %PLT  %90T  %E0T SRy ‘MOg  [euomIpeIL
%160 %L80  %EB0  %6L0 %SLO  %IL0  %L90  %EY0  %6S0  %SSO WM Mg Ao 6661-5661
(syutog siseq)
g2z oc (81 0/ §SI 661 9aI sIr L1 oI ooﬁsuwﬂm
pozienumy
%IS8  %0SL  %TI'L %LE9  %SS'S  %6TS  %6LT  %SEh %60t %86'€ ysry 'Hog sakeg
%EES  %EYL  %LE'D  %EE9  %TL'S WLI'S  %S89F  %6Th %00t %06°€ SR ‘Mog  [euonIpei]
%SLO  %IL0  %P90  %LS0 %0S0 %K  %LEO  %0S0 %S0 %910 Wy uod AU 6661-5661
01'HOd  6°MOd  §°MOd LMOd 9°MOd §MOd pMOd gMOg  gMog [ Mog ASoleng  siseg  pouag-qng

10} S8OUBIBYIP YSU pazilenuuy ‘siulod SISBg Ul PaINsesWl SWIS] paziienuue Ul soljojliod [eUOnIpeIl pue ueissAeg UssmMIaq s 01j0f1iod Ul 8dUaIalip 8yl SMOUS B|gel siy] G a|qeL

"UMOYS 8l sulnial xepul Ajyiuow 1o} pue suinlal Xapul Ajyeem

73

NsUnYG UN1INe1AesSSUAT NS

wNraseAN nsia

AU:



74

An Empirical Study on Effect of Estimation Risk on Portfolio Risk

discussed in this section are based on selected conjugate
prior approach, the Normal-Wishart distribution, and the diffuse
prior approach. For complete results regarding the effect of
estimation risk on efficient set and optimal weights allocation, the

empirical Bayesian portfolio is explored.

For each period, optimal weights are computed for each
strategy. Ex ante portfolio return is computed for the following
month. The first window, ranging from January 1992 to December
1996, is the base window for the optimal weights of the first
period. Ex ante portfolio returns are computed and recorded for
the next period, which is January 1997. Observed or ex post
return in January 1997 for each sector is recorded based on the
optimal weights from the ex ante portfolio. The same process is
repeated for the period from January 1997 to December 2004, or
97 months of optimal weights. From these time series of ex ante
and realized monthly returns and average portfolio risk, the Sharpe’s
ratios of those 97 portfolios are compared. A better portfolio
strategy would yield a higher Sharpe’s ratio and lower differences

between ex ante and ex post average values.

Table 6 shows that every portfolio strategy always
overestimates true parameter values. Ex ante average excess
portfolio returns are higher than those of ex post averages for all
strategies. Under ex ante average excess portfolio return, the
Traditional Portfolio strategy is expected to have the largest
average excess portfolio return compared with other strategies.
Ex ante average excess portfolio return for traditional or
mean-variance approach is 1.37 percent per month or 16.44
percent per annum. The lowest ex ante average excess portfolio
returns are those of naive and passive portfolio strategies (1.20
percent per month or 14.40 percent per annum). On the other
hand, ex post average excess portfolio return for the Bayes-Stein
portfolio is the highest at 0.88 percent per month or 10.56
percent per year and the lowest ex post average excess portfolio
return is for the passive portfolio strategy (0.56 percent per month

or 6.72 percent per annum). The largest deviation between ex

215 1SUSMNSESND

ante and ex post average excess portfolio return is for the passive
portfolio approach (0.65 percent per month or 7.78 percent per
year). Traditional portfolio approach has the second largest
deviation (0.53 percent per month or 6.35 percent per year). The
two lowest deviations between ex ante and ex post average
excess portfolio return are for the Naive and Bayes-Stein
Approach (0.44 percent per month or 5.28 percent per year for
Naive portfolio and 0.45 percent per month or 5.40 percent per

year for Bayes-Stein portfolio).

The last two columns in Table 6 report the Sharpe’s Ratio
of each strategy. Based on ex ante Sharpe’s Ratio, the passive or
value weighted approach produces the largest Sharpe’s Ratio and
the traditional or mean-variance approach has the lowest ratio.
This may lead to the conclusion that the passive or value weighted
approach yields a better performance on an ex ante basis.
However, the Bayes-Stein shrinkage portfolio performs best on

an ex post basis.
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Sharpe’s Ratios from the Bayes-Stein shrinkage approach
is the largest at 0.2290. The value weighted approach yields
the lowest Sharpe’s Ratio of 0.1809 based on ex post average.
Among optimized portfolio strategies, it can be concluded that
the ex post performance of the Bayesian portfolio approach
exceeded that of the traditional approach even though the
Bayesian portfolio approach seems to perform worse than the
Naive and traditional approaches on an ex ante basis. Further
studies on the estimation risk and portfolio selection could be
conducted by applying shrinkage mean estimation incorporating

asset pricing model in the informative prior function.

6. Conclusion

HIS study explores the effect of estimation risk on portfo
T lio efficient sets based on U.S. sectorial index returns.
Analytical discussion about the effect of estimation risk on
efficient sets and empirical evidence supporting the analytical
discussion are provided. Two points can be made from the ana-
Iytical discussion. The first is that portfolio returns are the same in
all three states, represented by the weighted average of sample
average return, W’m. The second conclusion is that portfolio risk
or portfolio variance when incorporating estimation risk differs
from the traditional portfolio by a scale factor. Therefore, when
estimation risk is taken into account, the admissible efficient set
is not changed. The only effect from estimation risk is that the
Bayesian efficient set will always lie to the right of the traditional

efficient frontier due to higher risk from the estimation.

When estimation risk is incorporated into the portfolio
decision process, it is shown that there exists loss in utility.
Two findings from the empirical evidences from this study are as
follows. Firstly, the optimal weights allocation of traditional and
Bayesian portfolios are the same. However, the annualized
Bayesian portfolio risk is larger than that of traditional portfolio by
approximately 40 to 80 basis points on a weekly index return

basis and by 100 to 220 basis points on a monthly index return

215 1SUSMNSESND

basis. Therefore, portfolio decisions based on a traditional
approach, ignoring estimation risk, would lead to a suboptimal
portfolio. Secondly, among four strategies analyzed in this study,
Baye-Stein shrinkage portfolio outperforms other alternative by
having largest ex post Sharpe’s ratio and yields the lowest deviation
between ex ante and ex post average excess portfolio return. The
annualized average excess portfolio return from Bayes-Stein
shrinkage portfolio is higher than those of traditional, passive, and

naive portfolio by 36, 384, and 144 basis points, respectively.

Appendix A
Derivation of Variance-Covariance Bayesian Portfolio

Assuming Stationarity Variance-Covariance Matrix.

Let: S = known variance-covariance matrix
S* = estimated variance-covariance matrix
P = portfolio return based on true parameter mean, W’u
p = portfolio return based on estimated mean, W’m

To form an optimal portfolio incorporating estimation risk,
the estimation error should be minimized. Estimation error is
defined as [P - pl. Variance of the estimation error, represented

by Var[P - pl, is an appropriate measure and will be minimized.

Var[P - pl = Var[P] + Varlpl + 2CovIP,pl (A.1)



Since P and p are independent, thus, Covip,p] = 0 and we can

simplify Equation (A.1) as
Var[P - p] = Var[P] + Var|p] (A2)

Since portfolio variance can be written in the following form

Var[P] = W’SW (A.3)
Varlp] = W’SW

Rewrite Equation (A.2)
Var[P - pl = W’SW + W’SW
= W(S+S*W (A4)

Since estimated variance-covariance, S*, is (%)A. Equation (A.4)

can be rewritten as

VarlP - pl = WS +?_)W = WSl -I%_)W = (1 +1T)vv’svv
VarlP - pl = (1 +%)s (A.5)
APPENDIX B

Bayesian Variance-Covariance Matrix: Assuming Popu-

lation Variance-Covariance is Known.

If R is a vector of asset return drawn from a normal
distribution, N(B, 0 where G is assumed known, the likelihood

function of parameter can be written as:

1(6|R) = (

1 ®1)

J_a) exp[

where: o= “proportion t0”

[(.)= likelihood function
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Since variance is assumed known, we can incorporate the
first term on the right of the function likelihood, , to the
constant term. Thus, the likelihood function is rewritten in the
following form:

I(0]o, R) o exp -—( ®2)

The result in Equation (B.2) is obtained by adding and
subtracting sample mean, R, to the last term in Equation (B.1),
Z(R[ - 0 )% After rearranging all terms, (B.1) can be rewritten as

follows:

1(6|R) e (

\f_cr

1 _ (B.3)
exp[—-—zE[(R‘. -R)-
20

(@-R)T]
After distributing the square and summation operator, we

have the following relation

1(6]R) o ( J_J

(B.4)

exp[—
Gather terms in Equation (B.4) and incorporate all
constant terms to the proportional function, we shall have the

relation as shown below.

HOIR) o< expl-—I=R)) .
a
T .0-R,
1(O|R) exp[~(3)(——)"] (B.6)

Rearranging terms in Equation (B.6), we would have the
final relationship as shown in Equation (B.2). Refer to the normal

probability density function shown below

. 1 R —u (B.7)
24-1/2 2
f(@)=@2r0" )" expl - ()]
We can infer, from Equations (B.2) and (B.7), that the
sample mean, R, represents population mean and %2 represents

population variance-covariance matrix.

4 See the proof of estimated variance-covariance under Bayesian approach when we assume population variance-covariance is know in

Appendix C.
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APPENDIX C
Lower and Upper Boundaries of Bayesian Adjusted
Factor

From the third state of analysis, where both and are not

known, the Bayesian adjusted factor is stated below:

(I =T -n+1)

[ ] (C.1)
T°(T -n-1)
where: T = number of observations
n = number of assets
T>n

From Equation (C.1), it is impossible for the scalar factor
to take zero value because the number of observations and
assets are non negative values. Four possible values of the
Bayesian adjusted factor are negative, greater than zero but less
than unity, unity, and larger than unity. Four scenarios are shown
below.

(i) Bayesian adjusted factor is a negative value:

T =1)(T —n+1)
T*(T —n-1)

[ 1<0

(C.2.1)

Since the numerator and denominator of Equation (C.1)
are non negative values as the number of observations is greater
than number of assets, then the Bayesian adjusted factor will be
a non negative value.

(T* =1)(T -=n+1) >0 (22

T°(T-n-1) >0
(C.2.3)
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(i) Bayesian adjusted factor is greater than zero but less than

unity:

(T* =T —=n+1)

0<
[ T°(T -n-1)

I<1 (€3)
The relationship can be restated as shown below.
(T? =T =n+1)< T*(T —n-1) (C.4)

Distribute and collect all terms in Equation (C.4) giving:

T2 -T2 n4T?* -T+n-1<T —T?p_72 D

72T -1) <1-n
(C.6)

From Equation (C.5), as the number of assets is a non
negative value, the right-hand side of the equation is a negative
value, from which it can be implied that the value on the left-hand
side is also a negative value. Since the number of observations is
also a non-negative value, it is impossible for T(2T - 1) to be a
negative value. Then, Equation (C.5) is not true and it can be
concluded that the Bayesian adjusted factor is not a positive value

between zero and unity.

(iii) Bayesian adjusted factor value is unity:

(T =I)(T —n+1)
T*(T—n-1)

[ =1 (C.7)



As stated in Equation (C.3), after distributing and collecting
the terms, the relationship is stated below.

(C.8)
(T* DT -n+) =T*(T-n-1)
T(2T -1) =1-n co)

The relationship in Equation (C.8) is not true because the
left-hand side of the equation is a positive value whereas the
right-hand side is a negative value. Hence, we can conclude that

Bayesian adjusted factor value is not equal to unity.

(iv) Bayesian adjusted factor is larger than unity:

(T =1)(T —n+1)
T*(T—n-1)

[

121 (€.10)

17 30 217U 116 mAIAN - Fiu21AN 2550
From Equation (C.10), the relationship can be stated as
TQT-1)>1-n c11)
From the four scenarios, only the fourth scenario, or Equa-

tion (C.11), is compiled. It can be concluded that the Bayesian

adjusted factor is a value larger than unity.
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