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[ ABSTRACT ]
HIS study explores effect of estimation risk on an admis
sible efficient set and an optimal portfolio based on a Bayesian

framework assuming diffuse prior and informative conjugate prior
distribution functions. Based on the U.S. sectorial index, the
result indicated that, when estimation risk is taken into account,
the admissible efficient set is not changed. Therefore, three
conclusions can be drawn. First, true portfolio returns can be
represented by weighted average sample returns given that
samples are drawn from high frequency data with a long average
period. However, historical sample average is not an efficient
estimator for true parameters. Second, portfolio risk or variance,
when estimation risk is built into a decision, is affected by a scale
factor. Therefore, a Bayesian admissible efficient set will always
lies to the right of the traditional admissible efficient set due to
higher risk from estimation. Third, portfolio decisions based on
a traditional approach, ignoring estimation risk, would lead to a
suboptimal portfolio due to utility loss caused by underestimation
of risk. Empirical results show that annualized Bayesian portfolio
risk is larger than that of a traditional portfolio by approximately
40 to 80 basis points for a weekly index return interval and
approximately 100 to 220 basis points for a monthly index return
interval. Moreover, The annualized average excess portfolio
return from Bayes-Stein shrinkage portfolio is higher than those
of traditional, passive, and naïve portfolio by 36, 384, and 144
basis points, respectively.

An Empirical Study
on Effect of Estimation
Risk on Portfolio Risk
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on the admissble efficient set. The second aspect is to examine

whether an optimal portfolio suggested by traditional approach

and an optimal portfolio incorporating estimation risk are different

or not. The third study is to analytically discuss loss in utility due

to the effect of estimation risk in portfolio formation process. The

last facet is to provide empirical evidence regarding effect of

estimation risk on an optimal portfolio. This study explores the

effect of estimation risk on an admissible efficient set and an

optimal portfolio based on analysis under a Bayesian framework

assuming a diffused prior density function and informative prior

based on a selected conjugate density distribution.

Section Two discusses the evolutions of past studies

regarding the estimation risk and the application of Bayesian

Portfolios concept. Section Three explores the effects of estimation

risk on portfolio risk and portfolio return and loss in utility. Data

and Empirical evidence based on U.S. sectorial index returns

adjusted for dividend are provided in Section Four and Five,

respectively. The last section is the conclusion.

2. Estimation Risk and Bayesian
Portfolio Selection

NE of the fundamental propositions in modern finance

theory is that security risk should be viewed in the

context of a portfolio. Jorion (1986) stated that ç...It is astonishing

then that estimation techniques in finance have not recognized

the implications of this result for efficient estimation of unknown

parameters.é

Using the classical mean-variance framework, where no

attention is paid to uncertainty about the expected value and

covariance matrix of asset returns, investors may underestimate

portfolio risk and be willing to invest in a traditionally sub-optimal

portfolio. Adler and Dumars (1983) documented that determining

the optimal portfolio composition of the traditional approach is not

correct because there is no statistical approach taking into

1. Introduction

HEN making a decision in portfolio selection under

uncertainty, investors have long followed the practice

of modern portfolio theory as documented by Markowitz (1952).

Traditional portfolio allocation assumes known parameters with

stationarity. In other words, traditional practice assumes that

the joint probability density function of asset returns and true

population mean vector and variance-covariance are known and

parameters possess a stationary property. As a result of

traditional assumptions, expected utility can be evaluated by

substituting point estimates of sampling moments in the utility

function. However, the joint probability density function of asset

returns and parameters are usually not completely known.

Therefore, in the portfolio selection process, we encounter not

only the uncertainty of the future asset return generating process,

but also the uncertainty of the functional form of the joint

probability density function and of asset return parameters. These

uncertainties are called estimation risks. The çestimation riské

comes from both choosing poor probability models and ignoring

parameter uncertainty.

The common practice in portfolio selection for the

traditional perspective is utilizing a single unknown parameter,

such as assuming that the expected return for the portfolio is

known but the volatility of asset returns is not known. To solve a

portfolio selection problem is to find the appropriate weight of

investment (asset allocation) in order to minimize return volatility

given the expected return. By assuming one parameter is known,

estimation risk is not treated properly. The contribution of this

study is to provide empirical evidence of estimation uncertainty

on the admissible efficient set based on the analytical works of

Brown (1979) ,Bawa (1976), and Shrinkage estimator of Jorion

(1986).

There are four pieces of related works discussed in this

study. The first discussion is to explore effect of estimation risk

O
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account the estimation risk. Jorion (1985) explored estimation risk

in an international portfolio context and found that estimation risk

due to uncertain mean returns has a considerable impact on

optimal portfolio selection. Britten-Jones (1999) also performed

an empirical test of an international efficient portfolio by testing

mean variance efficiency using the regression approach and found

that sampling error in estimates of the weights of a global

efficient portfolio is large. The result implies that there is no

statistical support for portfolio diversification as suggested by

the traditional portfolio approach.

Empirical evidence from Klein and Bawa (1976, 1977),

Adler and Dumars (1983), Jorion (1985, 1986), Frost and Savarino

(1986), Britten-Jones (1999), Polson and Tew (2000), and

Greyserman et al. (2006) indicated that optimal members of

traditional portfolios are different from those of portfolios

incorporating estimation risk, and that it is more efficient to

incorporate estimation risk in the portfolio selection process. Klein

and Bawa (1977) also documented that risk-averse investors tend

to invest relatively more in securities about which they have more

information.

In portfolio selection within a Bayesian framework,

optimal weights of investment are based on maximization of

expected utility conditional on the predictive distribution of asset

returns. Diffuse prior or non-informative prior distribution is widely

used in previous work to alleviate the effect of estimation risk,

such as by Klein and Bawa (1976), Bawa (1979), Brown (1979),

etc. However, the estimation error is not reduced. Performance

of the portfolio can be improved if the informative prior that

reduces estimation risk is correctly specified.

Frost and Savarino (1986) suggested an informative prior

distribution where all securities have identical expected returns,

variances, and pairwise correlation coefficients. Such informative

priors would reduce the estimation error because posterior

estimates of parameters will be drawn from a specific distribution

toward the average values of those parameters for all securities in

the population or drawn toward the grand mean of those

parameters. According to Barberis (2000), the empirical evidence

indicates that investors with long horizon investments who ignore

parameter uncertainty may over allocate to stocks by a sizeable

amount. This suggests that estimation risk should be incorporated

in portfolio selection decision.

2.1 Clarification of Variable and Notation of Portfolio

Selection Process:

Let Rit = [(r
11
, r

12
, ..., r

1t 
)û , (r

21
, r

22
, ..., r

2t 
)û,..., (r

n1
, r

n2
, ...,

r
nt
)û] denote the random return vector representing rates of return

on asset i, i = 1, 2,..., n, in period t, r
it
denote a vector or random

variable, namely future security returns, w denote a vector of

proportions of wealth invested in securities, R(r, w) denote

a random return vector resulting from an investorûs decision and

ƒ (R θ) and p(R
t
, θ)1 denote a joint probability density function for

random return observations R
it
 and a parameter vectorθ. The

parameter vector under portfolio allocation contains the true value

of mean and covariance of asset returns, θ=(μ, Σ). Furthermore,

assume that data consists of a random sample return of T
i

observations on each sectorial return.

Optimal investment decisions by any rational investor is

determined from a golden axiom which complies with that of the

Von Neumann-Morgenstern axiom, stating that an investor chooses

an alternative investment that maximizes the expected utility

of return on his/her investment. The problem of portfolio

optimization is reduced to indicating the efficient frontier or the

set of portfolios that have maximal expected portfolio returns

given a specific level of expected portfolio variance or the set of

~

~

1 The joint probability density function can be stated in the form of ƒ (R θ). The interpretation of ƒ (R θ) is the density function of security

return given that the true population parameter is known or ƒ (θ) is treated as a constant.
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~
portfolios that have minimal expected portfolio variance given a

specific level of expected portfolio return. Finally, let U(R) denote

any investorûs utility function defined over the random return

vector, R. If the true parameter, θ , is known, an investor would

choose an appropriate weight of investment that maximizes the

expected utility as stated below:

(1)

In short, the optimal portfolio decision is to determine

optimal weights allocated to each sector or to find the solution

from a quadratic optimization that minimizes portfolio risk

subjected to the constraint set. Solution of the optimization

problem or weight invested in each sector under mean variance

efficient portfolio, X
EV
, is determined as:

(2)

The optimal weights of a global minimum portfolio

assigned to each sector, X
GM

, are determined as:

(3)

From the solution of global minimum optimal weight, the

variance-covariance matrix is the key factor in the problem. This

implies that estimation risk can be incorporated into the portfolio

selection process by adjusting the variance-covariance matrix.

Updating or adjusting the variance-covariance matrix can be done

under the Bayesian framework. As suggested by Zellner and Chetty

(1965), incorporating parameter uncertainty in any decision

requires a derivation of predictive probability which can be done

by integrating out the unknown parameter.

2.2 Effect of Estimation Risk on Portfolio Return and

Portfolio Risk: An Analytical Analysis

In order to apply modern portfolio formation concepts, an

investor must form expectations about the future performance of

all securities in his/her universe. Future asset returns distribution

on a set of n securities are assumed to be multivariate normal

distributed with mean μ and covariance matrix Σ, where μ is an

n x 1 vector, and Σ is an n x n positive definite symmetric matrix.

Let R represent the return vector with a dimension of t x 1

where t is the number of observations and W represents the

proportion of investment vector with the dimension of n x 1.

Sample mean and sample covariance can be defined as follows.

(4)

(5)

where : m = sample mean vector

S = sample variance-covariance matrix

t = number of observations

n = number of assets

Taking estimation risk into account, Kalymon (1971), Winkler

(1973), Barry (1974) and Bawa, Brown, and Klein (1979) suggested

a Bayesian framework under three states of prior knowledge.

The first state assumes that the population or true parameters, μ

and Σ, are known. The first state is typically assumed in

traditional portfolio selection or mean variance analysis. The

second state assumes that the true variance-covariance Σ is known

and μ is not known. Kalymon (1971) suggested Bayesian portfolio

selection under the second state. The third state assumes that

both population parameters μ and Σ are not known. In this study,

the analysis follows the third state as suggested by Winkler (1973).

~

From the concept of conditional probability, we can easily see that              .Let   denote proportional density function.

We can incorporate a  constant into    and rewrite           as
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2.2.1 The First State: Both μ and Σ are Known

In this state, an investor estimates the population

mean μ with sample mean m and population variance-covariance

matrix Σ with sample variance-covariance matrix S. Portfolio

return, Wûμ, is estimated by Wûm and the portfolio variance,

WûΣ W, is estimated by WûSW. The result of the first state is

equal to the result of the diffuse prior Bayesian portfolio as shown

in Appendix A. When sample size is very large and approaches

infinity, variance of portfolio equals WûSW.

2.2.2 The Second State: Σ is Known and μ is Not Known

Follow Kalymon (1971), in this state, an investor

treats S as the çknowné value of Σ and uses both prior and

other information to estimate the unknown mean μ. The prior

information used in this study is data base prior which is obtained

from past data or the prior information is obtained from the asset

return itself of the current return of n assets. A posterior mean,

either diffuse or informative multivariate normal prior distribution,

is the sample mean return m.

According to Kalymon (1971), the variance-covariance

matrix is specified as S +   S or S (1+  )2, where T represents

number of observations. Portfolio return is Wûm and the portfolio

variance is Wû [1+   ]SW . The portfolio variance can be rewritten

in terms of the portfolio variance of the first state as follows:

[1+   ] WûSW = [1+   ] * Portfolio variance of the first state  (6)

2.2.3 The Third State: Both μ and Σ are Not Known

In this state, informative prior Bayesian with a

specified prior conjugate distribution is applied. Suppose an

investor assumes that joint distribution of μ and Σ is

normal-inverted Wishart family. For a multinormal process with

unknown mean vector μ and unknown variance-covariance matrix

Σ, the corresponding family of conjugate prior distributions is the

normal-inverted Wishart family. Following Winkler (1973), the

marginal distribution of Σ is inverted Wishart. The distribution of

mean return μ conditional on the variance-covariance matrix is

normal with a mean vector of m and a covariance matrix of

    Σ. Symbolically, this can be written f
N
 (μ  Σ)~N(m,   Σ).

The predictive distribution of is a multivariate t distribution

with the following two moments:

E(R) = m = sample mean (7.1)

(7.2)

Portfolio return is  and the portfolio variance is

(8)

    where:                     is a scalar term3 larger than 1.

With the diffuse prior and selected conjugate prior

distributions, we would benefit from the analytical Bayesian

framework by having the closed form of the first two moments of

asset return as shown in three states of analysis discussed above.

2 See the Appendices A and B for proofs.
3 For details see Appendix C

1
T

1
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1
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1
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2.3 Bayesian Framework Treating all Assets are

Identical: Bayes-Stein Shrinkage

Within this framework, the prior belief is that all assets

will converge to a common mean or grand mean. True

parameters can be estimated by assigning appropriate weights to

the historical sample mean and the grand mean depending on

prior information or knowledge of asset returns. If an investor has

high confidence about the asset return distribution due to long

historical data being used, less weight will be given to the grand

mean. On the other hand, if not enough information regarding

asset returns is on hand, the investor would assign more weight

to the common mean. According to Jorion (1986), the selected

informative conjugate prior on average return is given by the

following.

(9)

where: R = historical or sample average return

η = grand mean

λ = prior precision

Given that the vector of observed returns on any assets

follows the normal distribution which can be stated as

(10)

Applying  concept of the James-Stein shrinkage estimator,

Jorion (1986) suggested the use of the selected informative prior

as in Equation (9) and inferred that the predictive density function

p(r R, Σ, λ) is multivariate normal with mean and variance as

stated below.

(11)

(12)

where: ω = weight assigned to grand mean

E[r] = vector of future rate of return derived from the

predictive density function

(13)

1 = vector of unity

 λ = precision parameter

Following Jorion (1986), the grand mean is treated as the

average return for the global minimum portfolio. The grand mean

can be calculated as the product of the global minimum weight

and the historical average return on each asset.

(14)

An empirical Bayesian approach lets the data speak through

the precision parameter, λ. This means that λ is directly estimated

from the data. Given that probability density function of the

precision, p(λ μ, η, Σ) is a gamma distribution with mean
(N + 2), where d is defined as (R - 1η)ûΣ-1 (R - 1η). The

shrinkage coefficient, ω, and precision, as constructed by Jorion

(1986) are given below.

(15)

(16)

Zellner and Chetty (1965) suggested a predict variance-

covariance estimator when the variance-covariance parameter is

not known, as shown below.

(17)

where: S = unbiased sample variance-covariance matrix

d
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3. Effect of Estimation Risk on
Efficient Set and Utility Loss

3.1 Effect of Estimation Risk on Efficient Set

Two points can be concluded from the analytical Bayesian

portfolio of three states discussed in the last section. The first is

the conclusion drawn for portfolio return and the second is the

conclusion for portfolio risk or variance when estimation risk is

taken into account. Portfolio returns are the same in all three

states, Wûm. Klein, Bawa, and Brown (1979) showed that in the

limiting and diffuse prior case, the mean of the relevant predictive

distribution of returns is given by the sample mean.

Portfolio risk or portfolio variance is different by a scale

factor. This means that portfolio variance in all states has a

common factor, WûSW. The variance-covariance matrix in the

second and third states can be written in the form of the

variance-covariance matrix of the first state.  As shown in Table 1,

as estimation risk is incorporated in the portfolio formation

process, portfolio risk or variance of the portfolio in state 2 and

state 3 is larger than that of the portfolio in state 1 by

[1+1 ] and  [ (T
2 - 1) (T - n + 1) ], respectively.

Table1: This table shows portfolio return and portfolio variance

under three states of analysis. The first state assumes that

population or true parameters, μ and Σ, are known. The first

state is typically assumed in traditional portfolio selection or mean

variance analysis. The second state assumes that true variance-

covariance Σ is known and μ is not known. The third state

assumes that both population parameters μ and Σ are not known.

From Table 1, portfolio variance of the third state is the

largest and portfolio variance of the first state, or traditional

mean-variance approach, has the smallest value. This can be

interpreted as meaning that, as the uncertainty from estimation

increases, the risk perceived by investors should increase.

The application is that a rational investor will be more aware of

risk. Therefore, given the same level of risk, a rational investor

who takes into account the estimation risk will require a higher

expected rate of return than one who forms a portfolio based on

a traditional approach.

The admissible efficient set is a set of portfolio that yields

the highest portfolio return given a level of risk, or a set of

portfolio that has the lowest portfolio risk given a level of portfolio

return. From Table 1, the portfolio risk of each state, WûSW, is

the same, which can be interpreted as meaning that portfolio risk

in each state is not affected by estimation risk. Only the constant

term is multiplied to the portfolio risk, WûSW. An investor would

be selecting the same admissible efficient set under the

mean-variance analysis regardless of the state of analysis.

Let  Wû
a
 represents the vector of optimal proportion

allocated to each asset under each state of analysis and let Ai

be the vector of weights conditional on portfolio variance of each

state.

Let K1 =

K2 =

Ai = Vector of weight conditional on portfolio variance,

Ai, in each state.

T T2 - (T - n + 1)

State of analysis Portfolio Return Portfolio Variance

Both μ and Σ are known Wûm  WûSW

Σ is known and μ is not  known Wûm

Both μ and Σ are not known Wûm  WûSW

[ 1 + 1 )T

[ (T
2 - 1) (T - n + 1) ]
T2 (T - n - 1)

T[ 1 + 1  ]

[ (T
2 - 1) (T - n + 1) ]
T2 (T - n - 1)
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Table 2: This table shows the admissible set under each state of

analysis. There are three states in the analysis. The first state

assumes that population or true parameters, μ and Σ, are known.

The first state is typically assumed in traditional portfolio selection

or mean variance analysis. The second state assumes that true

variance-covariance Σ is known and μ is not known. The third

state assumes that both population parameters μ and Σ are not

known.

period wealth will be maximized based on expected return from

investor portfolio decisions. This implies that to maximize end of

period wealth, an investor decides on the weight of investment to

maximize the utility of expected return on portfolio M = , where is

the vector of future observed return.

(18)

State of analysis Vector A
i

Both μ and Σ are known A
1
 = {W  W ‘SW = W

a 
‘SW

a
’}

Σ is known and μ is not  known A
2
 = {W  K

1
 W ‘SW = K

1
W

a 
‘SW

a
’}

Both μ and Σ are not known A
2
 = {W  K

2
 W ‘SW = K

2
W

a 
‘SW

a
’}

From Table 2, vectors of weight assigned to the optimal

portfolio conditional on portfolio variance in three states are

different due to the scale factors. Since K
1
 and K

2
 are constants,

conditional weight assigned to each asset will not be affected by

estimation risk. This can be substantiated by empirical evidence.

When comparing the efficient frontier constructed from a

traditional approach with that of the Bayesian approach,

analytically, the Bayesian portfolio has higher risk for all levels of

expected return. This implies that the Bayesian efficient frontier

will always lies to the right of the traditional efficient frontier or

lies below the traditional portfolio.

3.2 Effect of Estimation Risk on Investor Utility

Two major steps in portfolio theory are constructing an

efficient frontier and determining an optimal portfolio according to

investor preference. Constructing an efficient frontier is the first

step in portfolio theory. Allocating oneûs wealth into two types of

assets, namely risky and riskless assets, is the second step.

An optimal portfolio is determined as a tangency between investorûs

utility and a portfolio efficient set. An investor always maximizes

the expected utility of his or her end of period wealth. End of

From the expected utility

function above, investor utility

function and the distribution of rate

of return conditioned on a set of

parameters must be known.

A traditional portfolio formation

approach assumes that true

parameters can be estimated by

sample parameters, (Ri), obtained

from the historical rate of return on assets. An optimal portfolio

under a traditional portfolio approach is obtained by the

relationship shown below.

(19)

To incorporate estimation risk in portfolio theory, the

predictive density function of asset returns should be used. Zellner

and Chetty (1965) suggested that, in determining an optimal

portfolio based on a Bayesian framework, by integrating out the

unknown parameter from the predictive density, estimation risk is

implicitly taken into account and the portfolio optimization

problem can be described as the maximization of the

unconditional expected utility.

(20)

(21)

Where p(θ  R, I
o
) is the posterior density function of θ,

given observed return and prior information, I
o
. We can state
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the posterior function as the product of density function of

a likelihood observed return and prior belief of true parameters as

follows.

= (22)

The expected utility optimization as a function of

mean-variance can be stated as

(23)

where: μ
M
, σ2

M
 are portfolio return and variance, respectively.

As utility function depends on portfolio expected returns

and variances and, as portfolio return is wûR
i
,and portfolio

variance is wû Σ w, optimal utility relies on the distribution

moments, θ = (μ, Σ). If the distribution moments of true

parameters are known, the expected utility of each investor would

be optimized. Let Z (μ∗
z 
, σ2∗

z 
) be an optimal expected utility.

Figure 1: Utility Loss Due To Estimation Risk
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            (24)

On the other hand, true parameters are not known. Sample

parameters are used as estimates for true parameters in

determining optimal portfolio choice. Expected utility of an

optimal portfolio based on distribution moments of sample

estimates is stated below.

(25)

It can be implied from Equations (24) and (25) that

expected utility based on true parameter estimators is always

higher than that based on sample estimates, Z (wû μ, wû Σ wû)

< Z
optimal

. This is because there is no estimation error in the

portfolio optimization process when true parameters are treated

as inputs. This implies that portfolio decisions based on sample

moments cause loss in utility due to parameter uncertainty.

Following Brown (1976), loss in utility due to estimation

risk is measured as

(26)

Figure 1 depicts loss in utility due to estimation risk.

If the true moments of asset return distribution are known, an

optimal portfolio is located on solid line at point A, where the

optimal weight is w*. If an efficient set is formed based on sample

parameters, as suggested by a traditional portfolio approach, the

dashed frontier, an optimal portfolio is located at point B, where

the optimal weight is w û. However, this choice w is suboptimal

relative to the true parameters. This is because point C, with the

same weight, w, as that of traditional portfolio yields lower utility

relative to utility at point A. The difference in value of expected

utility between point A and point C is called utility loss due to

estimation risk. Suboptimal portfolio decisions due to ignoring

estimation risk will be explored empirically in Section 5.

4. Data

HERE are one hundred and sixty-six sectors listed on

the New York Stock Exchange (NYSE). Information for

these 166 index sectors was obtained from Data Stream. Periods

in this study are weekly and monthly ranging from 1995 to 2004.

There are 522 week-observations per sector and 120 month-

observations per sector. The Internet sector (INTNT) was deleted

due to incomplete data. This leaves 165 sectors for the screening

process. Due to the large information set, two screening factors

for selecting data were set in this study. The size and liquidity of

each sector are used as screening factors. The proxy for size is

the market capitalization of each sector and the proxy for liquidity

is the turnover volume of each sector. The sectorial index used in

this study is the sectorial index return adjusted dividend or Return

Index (RI) from çData Streamé.

In the screening process, based on annual data from 1995

to 2004, the largest 30 sectors were selected based on size,

market capitalization. Among those 30 sectors, the fifteen most

liquid sectors by their turnover volume were selected as the data

set. Market values and turnover volumes of the selected fifteen

sectors represent 39.81 percent of the total market value and

54.64 percent of the total market turnover volumes. Table 3 shows

the result of data screening as discussed.

As shown in Table 3, Technology Hardware and

Equipment (INFOH) is the largest and is the most liquid sector.

Semiconductors (SEMIC) is the lowest in market capitalization

sector and Fixed Line Telecom (TELFL) is the least liquid sector.

The Banking sector is ranked among the largest in market size

but is ranked in the bottom 5 in turnover volume, whereas

Semiconductors (SEMIC) and Telecom Equipment (TELEQ) are

ranked in the bottom 5 of market capitalization but are ranked as

the top 5 in turnover volume. This implies that a sector ranked as

the largest in market capitalization may not be ranked as the most

liquid sector, and vice versa.

ˆ ˆ ˆ

ˆ ˆ

ˆ

T
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Market Value Turnover Volumes

(in Million $) (Thousands of Traded Share)
INFOH 919,200.36 81,637,018.40
TECHD 919,200.36 81,637,018.40
PHARM 808,065.43 20,151,565.13
BANKS 732,578.36 12,961,563.60
PHRMC 682,461.43 13,371,363.13
SFTCS 600,872.36 39,814,041.47
GNRET 502,692.29 17,124,408.27
TELCM 495,452.57 16,934,924.67
RTAIL 487,974.29 17,117,174.53
TELFL 429,564.00 12,309,664.53
SOFTW 394,993.36 27,241,120.13
COMPH 339,161.79 23,157,260.07
MEDIA 299,057.86 12,995,580.13
TELEQ 294,677.50 29,752,702.33

SEMIC 285,361.86 28,726,316.87

Top 5 Bottom 5

Market MarketValue Market Market Value

Value (in Million $) Value (in Million $)

INFOH 919,200.36 SOFTW 394,993.36
TECHD 919,200.36 COMPH 339,161.79
PHARM 808,065.43 MEDIA 299,057.86
BANKS 732,578.36 TELEQ 294,677.50
PHRMC 682,461.43 SEMIC 285,361.86
INFOH 81,637,018.40 TELCM 16,934,924.67
TECHD 81,637,018.40 PHRMC 13,371,363.13
SFTCS 39,814,041.47 MEDIA 12,995,580.13
TELEQ 29,752,702.33 BANKS 12,961,563.60

SEMIC 28,726,316.87 TELFL 12,309,664.53

Panel B: This panel shows results from ranking selected sectors in top 5 and bottom

5 based on market value and turnover volume respectively.

Table 3: Summary of Screening Results.

Panel A of this table shows selected sectors based on two criteria

and panel B shows ranked sectors by each criteria as top 5 and

bottom 5.

Panel A: Result of data screening based on two criteria: size and liquidity.
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5. Methodology and Empirical Evidence

HE empirical study in this section aims at comparing two
types of efficient frontier, the traditional mean-variance

efficient frontier and the Bayesian efficient frontier with selected
conjugate prior distribution. The objective is to substantiate that,
when estimation risk is taken into account, the admissible set of the
efficient frontier will not be changed. As estimation risk is incorporated
in portfolio formation, the Bayesian efficient set should always lie
to the right of the traditional efficient set due to higher risk.

To substantiate the invariant admissible set when
incorporating estimation risk in portfolio formation, two analyses
of different period lengths are explored and compared. The first
analysis is to construct and compare portfolio efficient sets and
optimal weights for traditional and Bayesian portfolios for the long
historical period. The second analysis is conducted over a
one-year horizon by comparing efficient sets and optimal weights.

Optimal weights will be assigned based on a quadratic
optimization approach. The objective function in portfolio
formation is to minimize portfolio risk given a level of expected
return.  In this subsection, a Bayesian portfolio is formed under
the assumption that both μ and Σ are not known and that joint
distribution of μ and Σ is normal-inverted Wishart family. Thus,
the corresponding family of conjugate prior distributions is the
normal-inverted Wishart family. Following analysis suggested by
Winkler (1973), Bayesian portfolio return and portfolio variance
will be estimated as follows:

Based on Equations (7) and (8), the objective functions in
the portfolio optimization procedure of two types of efficient set
are stated below.
Traditional approach:

Obj. Min WûSW (27)
Bayesian Approach (state 3):

Obj. Min [                       ] WûSW (28)

where: T = number of observations
n = number of sectors

Efficient frontiers from both approaches, as shown in Figures
2 and 3, are of the same shape for both sub-periods. When
comparing efficient sets between traditional and Bayesian
approaches, both efficient sets do not cross each other and the
Bayesian efficient set always lies to the right of the traditional
portfolio. The empirical results support the analytical results stated
by Brown (1979) and Klein and Bawa (1979). These results showed
that estimation risk leads to different optimal portfolio choice
leaving admissible efficient sets unaffected.

Barry (1974), Klein and Bawa (1979), and Brown (1979)
have provided theoretical proof that estimation risk leads to
different optimal portfolio choice while the admissible efficient
sets are not affected. However, no empirical evidence has been
proposed to support the claim and their analyses are based on
the diffuse prior distribution case. In this study, it is found that the
admissible efficient sets are the same and the optimal weights
of the two approaches are not different, as shown in Table 4.
However, the portfolio risk of the Bayesian portfolio is higher than
that of the traditional portfolio at the same level of portfolio
return. As a result, the Bayesian efficient portfolio always lies to
the right of the traditional efficient portfolio as depicted in
Figures 2 to 4. This implies that if investors form portfolios
which are mean-variance efficient portfolios, portfolio risks are
underestimated from a Bayesian portfolio perspective.

Empirical results shown in Table 5 indicate that annualized
Bayesian portfolio risk is consistently higher than that of
traditional portfolios. For monthly index return, annualized
Bayesian portfolio risk is higher, ranging from 104 to 223 basis
points in the first sub-period, and from 106 to 152 basis points
in the second sub-period. For the weekly index return panel,
annualized Bayesian portfolio risk is larger than that of a traditional
portfolio in the range of 43 to 83 basis points in sub-period
1995-1999, and 51 to 72 basis points in sub-period 2000-2004.

It can be deduced from this section that portfolio decisions
based on a traditional portfolio approach, ignoring estimation risk,
would lead to a suboptimal portfolio. The empirical result in this
section supports the analytical discussion in Section 3. When
estimation risk is ignored, an investor would face a utility loss

investment decision due to underestimated portfolio risk. Results

T

~ ~

(T2 - 1 )(T - n + 1)
T2 (T - n 1 1
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Figure 2: This figure depicts two efficient frontiers, traditional mean-variance and Bayesian portfolio. Panel A shows two

frontiers based on monthly index returns and Panel B shows two frontiers based on weekly index returns ranging from 1995 - 1999.

Figure 2 B: Comparing Two Efficient Frontiers Based on Weekly Index Return

Ranging from 1995 - 1999

Figure 2 A: Comparing Two Efficient Frontiers Based on Monthly Index Return

Ranging from 1995 - 1999
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Figure 3: This figure depicts two efficient frontiers, traditional mean-variance and Bayesian portfolio. Panel A shows two frontiers

based on monthly index returns and Panel B shows two frontiers based on weekly index returns ranging from 2000 - 2004.

Figure 3 A: Comparing Two Efficient Frontiers Based on Monthly Index Return Ranging from

2000 - 2004

Figure 3 B: Comparing Two Efficient Frontiers Based on Weekly Index Return Ranging from

2000 - 2004
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Figure 4: This figure depicts two efficient frontiers, traditional mean-variance and Bayesian portfolio based on annual analysis.  In Panels

A and B, two frontiers are based on monthly and weekly index returns of four sample years, which are 1998,1999, 2003, and 2004,

representing two sub-periods, respectively.

Figure 4 A: Bayesian and Mean-Variance Efficient Frontier Based on Monthly Index Return

Figure 4 B: Bayesian and Mean-Variance Efficient Frontier Based on Weekly Index Return
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discussed in this section are based on selected conjugate

prior approach, the Normal-Wishart distribution, and the diffuse

prior approach.  For complete results regarding the effect of

estimation risk on efficient set and optimal weights allocation, the

empirical Bayesian portfolio is explored.

For each period, optimal weights are computed for each

strategy. Ex ante portfolio return is computed for the following

month. The first window, ranging from January 1992 to December

1996, is the base window for the optimal weights of the first

period. Ex ante portfolio returns are computed and recorded for

the next period, which is January 1997. Observed or ex post

return in January 1997 for each sector is recorded based on the

optimal weights from the ex ante portfolio. The same process is

repeated for the period from January 1997 to December 2004, or

97 months of optimal weights.  From these time series of ex ante

and realized monthly returns and average portfolio risk, the Sharpeûs

ratios of those 97 portfolios are compared. A better portfolio

strategy would yield a higher Sharpeûs ratio and lower differences

between ex ante and ex post average values.

Table 6 shows that every portfolio strategy always

overestimates true parameter values. Ex ante average excess

portfolio returns are higher than those of ex post averages for all

strategies. Under ex ante average excess portfolio return, the

Traditional Portfolio strategy is expected to have the largest

average excess portfolio return compared with other strategies.

Ex ante average excess portfolio return for traditional or

mean-variance approach is 1.37 percent per month or 16.44

percent per annum. The lowest ex ante average excess portfolio

returns are those of naïve and passive portfolio strategies (1.20

percent per month or 14.40 percent per annum). On the other

hand, ex post average excess portfolio return for the Bayes-Stein

portfolio is the highest at 0.88 percent per month or 10.56

percent per year and the lowest ex post average excess portfolio

return is for the passive portfolio strategy (0.56 percent per month

or 6.72 percent per annum). The largest deviation between ex

ante and ex post average excess portfolio return is for the passive

portfolio approach (0.65 percent per month or 7.78 percent per

year). Traditional portfolio approach has the second largest

deviation (0.53 percent per month or 6.35 percent per year). The

two lowest deviations between ex ante and ex post average

excess portfolio return are for the Naïve and Bayes-Stein

Approach (0.44 percent per month or 5.28 percent per year for

Naïve portfolio and 0.45 percent per month or 5.40 percent per

year for Bayes-Stein portfolio).

The last two columns in Table 6 report the Sharpeûs Ratio

of each strategy. Based on ex ante Sharpeûs Ratio, the passive or

value weighted approach produces the largest Sharpeûs Ratio and

the traditional or mean-variance approach has the lowest ratio.

This may lead to the conclusion that the passive or value weighted

approach yields a better performance on an ex ante basis.

However, the Bayes-Stein shrinkage portfolio performs best on

an ex post basis.
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Sharpeûs Ratios from the Bayes-Stein shrinkage approach

is the largest at 0.2290. The value weighted approach yields

the lowest Sharpeûs Ratio of 0.1809 based on ex post average.

Among optimized portfolio strategies, it can be concluded that

the ex post performance of the Bayesian portfolio approach

exceeded that of the traditional approach even though the

Bayesian portfolio approach seems to perform worse than the

Naïve and traditional approaches on an ex ante basis. Further

studies on the estimation risk and portfolio selection could be

conducted by applying shrinkage mean estimation incorporating

asset pricing model in the informative prior function.

6. Conclusion

HIS study explores the effect of estimation risk on portfo

lio efficient sets based on U.S. sectorial index returns.

Analytical discussion about the effect of estimation risk on

efficient sets and empirical evidence supporting the analytical

discussion are provided. Two points can be made from the ana-

lytical discussion. The first is that portfolio returns are the same in

all three states, represented by the weighted average of sample

average return, Wûm. The second conclusion is that portfolio risk

or portfolio variance when incorporating estimation risk differs

from the traditional portfolio by a scale factor. Therefore, when

estimation risk is taken into account, the admissible efficient set

is not changed. The only effect from estimation risk is that the

Bayesian efficient set will always lie to the right of the traditional

efficient frontier due to higher risk from the estimation.

When estimation risk is incorporated into the portfolio

decision process, it is shown that there exists loss in utility.

Two findings from the empirical evidences from this study are as

follows. Firstly, the optimal weights allocation of traditional and

Bayesian portfolios are the same. However, the annualized

Bayesian portfolio risk is larger than that of traditional portfolio by

approximately 40 to 80 basis points on a weekly index return

basis and by 100 to 220 basis points on a monthly index return

basis. Therefore, portfolio decisions based on a traditional

approach, ignoring estimation risk, would lead to a suboptimal

portfolio. Secondly, among four strategies analyzed in this study,

Baye-Stein shrinkage portfolio outperforms other alternative by

having largest ex post Sharpeûs ratio and yields the lowest deviation

between ex ante and ex post average excess portfolio return. The

annualized average excess portfolio return from Bayes-Stein

shrinkage portfolio is higher than those of traditional, passive, and

naïve portfolio by 36, 384, and 144 basis points, respectively.

Appendix A

Derivation of Variance-Covariance Bayesian Portfolio

Assuming Stationarity Variance-Covariance Matrix.

Let: S = known variance-covariance matrix

S* = estimated variance-covariance matrix

P = portfolio return based on true parameter mean, Wûμ

p = portfolio return based on estimated mean, Wûm

To form an optimal portfolio incorporating estimation risk,

the estimation error should be minimized. Estimation error is

defined as [P - p]. Variance of the estimation error, represented

by Var[P - p], is an appropriate measure and will be minimized.

Var[P - p] = Var[P] + Var[p] + 2Cov[P,p] (A.1)

T
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Since P and p are independent, thus, Cov{p,p] = 0 and we can

simplify Equation (A.1) as

Var[P - p] = Var[P] + Var[p] (A.2)

Since portfolio variance can be written in the following form

Var[P] = WûSW (A.3)

Var[p] = WûSW

Rewrite Equation (A.2)

Var[P - p] =  WûSW + WûSW

=  Wû(S + S*) W (A.4)

Since estimated variance-covariance, S*, is (   )4. Equation (A.4)

can be rewritten as

Var[P - p] =  Wû(S +  )W = WûS(1 +  )W = (1 +  )WûSW

Var[P - p] = (1 +   )S (A.5)

APPENDIX B

Bayesian Variance-Covariance Matrix: Assuming Popu-

lation Variance-Covariance is Known.

If R is a vector of asset return drawn from a normal

distribution, N(θ, σ2) where σ is assumed known, the likelihood

function of parameter can be written as:

(B.1)

where: ∝= çproportion toé

l(.)= likelihood function

Since variance is assumed known, we can incorporate the

first term on the right of the function likelihood,         , to the

constant term. Thus, the likelihood function is rewritten in the

following form:

(B.2)

The result in Equation (B.2) is obtained by adding and

subtracting sample mean, R, to the last term in Equation (B.1),

Σ(R
i
 - θ )2. After rearranging all terms, (B.1) can be rewritten as

follows:

(B.3)

After distributing the square and summation operator, we

have the following relation.

(B.4)

Gather terms in Equation (B.4) and incorporate all

constant terms to the proportional function, we shall have the

relation as shown below.

(B.5)

(B.6)

Rearranging terms in Equation (B.6), we would have the

final relationship as shown in Equation (B.2).  Refer to the normal

probability density function shown below

(B.7)

We can infer, from Equations (B.2) and (B.7), that the

sample mean, R, represents population mean and σ
2
 represents

population variance-covariance matrix.

S
T

S
T

1
T

1
T

1
T

4 See the proof of estimated variance-covariance under Bayesian approach when we assume population variance-covariance is know in

Appendix C.

T



78 «“√ “√∫√‘À“√∏ÿ√°‘®

An Empirical Study on Effect of Estimation Risk on Portfolio Risk

APPENDIX C

Lower and Upper Boundaries of Bayesian Adjusted

Factor

From the third state of analysis, where both  and  are not

known, the Bayesian adjusted factor is stated below:

(C.1)

where: T = number of observations

n = number of assets

T > n

From Equation (C.1), it is impossible for the scalar factor

to take zero value because the number of observations and

assets are non negative values. Four possible values of the

Bayesian adjusted factor are negative, greater than zero but less

than unity, unity, and larger than unity. Four scenarios are shown

below.

(i) Bayesian adjusted factor is a negative value:

(C.2.1)

Since the numerator and denominator of Equation (C.1)

are non negative values as the number of observations is greater

than number of assets, then the Bayesian adjusted factor will be

a non negative value.

(C.2.2)

(C.2.3)

(ii) Bayesian adjusted factor is greater than zero but less than

unity:

(C.3)

The relationship can be restated as shown below.

(C.4)

Distribute and collect all terms in Equation (C.4) giving:

(C.5)

(C.6)

From Equation (C.5), as the number of assets is a non

negative value, the right-hand side of the equation is a negative

value, from which it can be implied that the value on the left-hand

side is also a negative value. Since the number of observations is

also a non-negative value, it is impossible for T(2T - 1) to be a

negative value. Then, Equation (C.5) is not true and it can be

concluded that the Bayesian adjusted factor is not a positive value

between zero and unity.

(iii) Bayesian adjusted factor value is unity:

(C.7)
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As stated in Equation (C.3), after distributing and collecting

the terms, the relationship is stated below.

(C.8)

(C.9)

The relationship in Equation (C.8) is not true because the

left-hand side of the equation is a positive value whereas the

right-hand side is a negative value. Hence, we can conclude that

Bayesian adjusted factor value is not equal to unity.

(iv) Bayesian adjusted factor is larger than unity:

(C.10)

From Equation (C.10), the relationship can be stated as

(C.11)

From the four scenarios, only the fourth scenario, or Equa-

tion (C.11), is compiled.  It can be concluded that the Bayesian

adjusted factor is a value larger than unity.
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